通过计算机层析成像技术对复杂组件进行孔隙率检测

六月 02, 2022

电子制造企业在产品内部的孔隙率评估上面临着挑战。Peter Koch和Jeff Urbanski展示了协同工作的新分析方法,可在关键界面上进行更精确的孔隙率测量。

While speaking with and visiting many electronics manufacturing plants in the US, we have heard dissatisfaction with their capability to measure porosity accurately. They stated them inability to detect flaws in high-density double-sided boards because of more fine pitch, complex components, and assemblies. Despite the general trend of microchip miniaturization, many manufacturers we work with continue to build very large PCB’s. As their products continue to be optimized for the highest performance, many EMS providers are left with dated equipment that provide vague low-quality images of their products. For this reason, products are no longer passing audit, making them unsuitable for their end customers who are incorporating their products into critical end-products, often in the medical device, communications, aerospace, or automotive segments. Both small and large electronics manufacturing companies are at-risk to produce low performing products if they are not able to verify their product quality.

Several types of components exist in electronics which have “hidden” or “bottom-terminated” solder joints. The solder joints of BGA (Ball Grid Array), LGA (Land Grid Array), QFN (Quad Flat No Leads), IGBT (Insulated-Gate Bipolar Transistor). Regardless of their different shapes all can be prone to solder voids and other conditions such as non-wet, head-in-pillow, opens, and shorts.

For SMT components like resistors, capacitors, and QFP’s (Quad Flat Packages) solder joints can be inspected with AOI. However, for the “hidden” components due to the solder joints being directly between the component and board, often only microns thick, this isn’t possible. When these solder joints overlay other pads on the back side of a board, this occludes the image and does not allow the reader to interpret solder joints clearly.

Fig. 1: LGA pads (larger rectangular shape below center of image)

Due to this market need, we have described below a few improved methods and analysis tools that work together to provide more accurate void measurement at critical interfaces than previously existed.

First, Computed Laminography (CL) is an x-ray technique which effectively provides a virtual cross section for a single or for multiple layers in a component, usually at board-component interface. In comparison to CT (Computed Tomography), CL allows data to be collected by rotating the object around the same axis the beam is shooting. This enables the x-ray source to get very close to the PCB. Depending on the PCB size, a user can magnify a small area to a much higher resolution than they could using CT to scan the same object, without sectioning it from the PCB. This flexibility allows users to zoom in or out to an appropriate resolution for the features that require inspection.

The resulting volume can be analyzed as individual slices, sections, or as the whole volume. Slices can be analyzed quickly and accurately because of the reduced background “noise” in this image.

Fig. 2: LGA solder interface

The VoidInspect workflow software, by Yxlon powered by ORS (Object Research Systems), walks the user through the process of defining the measurement area at the actual cross section of the solder joint, not only the CAD estimated position of the pad. Then they can adjust the threshold to define the voids. Once this process is set up on one or more images, it can be saved as a process which can be recalled automatically. Once defined, this process then runs itself and the data can be reviewed for acceptable and failed pins. Or the data can be exported for more detailed review by the process engineering team in their quality system.

Fig. 3a: Automatic pad detection

-> Fig. 3b: Automatic void detection

-> Fig. 3c: List of void % with pass/fail criteria

For these LGA pins and other solder joints, it has been verified that the combination of the high-quality x-ray image, and these inspection algorithms result in extremely repeatable and accurate void measurement results.

We look forward to future learning and sharing of these advanced inspection tools being developed in partnership between Yxlon and ORS, both are companies of the Comet Group. For additional information regarding VoidInspect, follow this link.

最近更新

Dragonfly赋能铸件快速孔隙率分析

九月 29, 2023 | Gina Naujokat

使用 Dragonfly CT 三维体数据分析软件评估铸件孔隙率有三种简单且快速的方法,每种方法均可使用宏自动完成。具体方法和分析时间可通过下载附带应用说明文件获取了解。

View more

Looking back millions of years into the earth's history with computed tomography

七月 27, 2023 | Gina Naujokat

A sedimentary slab from the Holstein Rock was to be examined for its fossil content using computed tomography. Latest CT technology provided results no one had expected.

View more

Unveiling the Mysteries of Life's Origins: Comet Yxlon and our Partnership with the Museum für Naturkunde Berlin

六月 06, 2023 | Isabella Drolz

Have you ever pondered the wondrous journey of life, from conception to birth? At Comet Yxlon, we are proud to support the Museum für Naturkunde Berlin in their quest to answer this profound question through the innovative application of CT technology.

View more