Additive Manufacturing and Computer Tomography in Formula 1
二月 05, 2019
Additive manufacturing processes have been incorporated into many industries in recent years and play a major role especially in the aviation and automotive industries.
Additive manufacturing processes have been incorporated into many industries in recent years and play a major role especially in the aviation and automotive industries. Formula 1 is an important technology driver for both of these sectors and is responsible for the development of innovative components of new materials. Renault F1 Team presents examples where Computer Tomography is a benefitial tool in research and development.
At Renault F1 Team, roughly 60 of the 20,000 parts in the current Formula 1 race cars are produced via additive manufacturing. Each individual component must pass through an extensive test cycle before it is approved for the race track.
In contrast to the classic die casting procedure, additive manufacturing (also known as 3D printing, generative manufacturing or e-manufacturing) prints the components layer by layer. The materials used range from plastics to metals and metal alloys as well as hybrid materials and enable a wide range of new properties and design variants. Not all effects are known yet, and numerous studies are under way to better understand the interaction between materials, 3D printing processes and material properties.
Renault F1 Team, together with YXLON International, demonstrates based on a number of examples that AM and CT go well together: Computer tomography is the only analysis technology that can visualize the complex inner structures of parts even down to the nanoscale, discovering hidden defects and determining with high precision the location and size of material flaws. In this way, it serves not only for quality assurance but also saves time and money as part of the development and production processes.
The following components were examined with the YXLON FF35 CT system (225 kV direct emitter) taking up to 2,600 sub-images (projections). Based on the scans, various mathematical algorithms generate a digital 3D volume that visualizes the inner and outer structures of the part and enables numerous analyses and evaluations.
Aluminum Oil Pump Housing - material inspection
Hydraulic Component - determination of wall thickness
Air Intake Diffuser - analysis for pores and inclusions
最近更新
Dragonfly赋能铸件快速孔隙率分析
九月 29, 2023 | Gina Naujokat
使用 Dragonfly CT 三维体数据分析软件评估铸件孔隙率有三种简单且快速的方法,每种方法均可使用宏自动完成。具体方法和分析时间可通过下载附带应用说明文件获取了解。
View moreLooking back millions of years into the earth's history with computed tomography
七月 27, 2023 | Gina Naujokat
A sedimentary slab from the Holstein Rock was to be examined for its fossil content using computed tomography. Latest CT technology provided results no one had expected.
View moreUnveiling the Mysteries of Life's Origins: Comet Yxlon and our Partnership with the Museum für Naturkunde Berlin
六月 06, 2023 | Isabella Drolz
Have you ever pondered the wondrous journey of life, from conception to birth? At Comet Yxlon, we are proud to support the Museum für Naturkunde Berlin in their quest to answer this profound question through the innovative application of CT technology.
View more