Additive Manufacturing and Computer Tomography in Formula 1
二月 05, 2019
Additive manufacturing processes have been incorporated into many industries in recent years and play a major role especially in the aviation and automotive industries.
Additive manufacturing processes have been incorporated into many industries in recent years and play a major role especially in the aviation and automotive industries. Formula 1 is an important technology driver for both of these sectors and is responsible for the development of innovative components of new materials. Renault F1 Team presents examples where Computer Tomography is a benefitial tool in research and development.
At Renault F1 Team, roughly 60 of the 20,000 parts in the current Formula 1 race cars are produced via additive manufacturing. Each individual component must pass through an extensive test cycle before it is approved for the race track.
In contrast to the classic die casting procedure, additive manufacturing (also known as 3D printing, generative manufacturing or e-manufacturing) prints the components layer by layer. The materials used range from plastics to metals and metal alloys as well as hybrid materials and enable a wide range of new properties and design variants. Not all effects are known yet, and numerous studies are under way to better understand the interaction between materials, 3D printing processes and material properties.
Renault F1 Team, together with YXLON International, demonstrates based on a number of examples that AM and CT go well together: Computer tomography is the only analysis technology that can visualize the complex inner structures of parts even down to the nanoscale, discovering hidden defects and determining with high precision the location and size of material flaws. In this way, it serves not only for quality assurance but also saves time and money as part of the development and production processes.
The following components were examined with the YXLON FF35 CT system (225 kV direct emitter) taking up to 2,600 sub-images (projections). Based on the scans, various mathematical algorithms generate a digital 3D volume that visualizes the inner and outer structures of the part and enables numerous analyses and evaluations.
Aluminum Oil Pump Housing - material inspection
Hydraulic Component - determination of wall thickness
Air Intake Diffuser - analysis for pores and inclusions
最近更新
What is inside a battery cell?
二月 10, 2023 | Nils Achilles
Lithium-ion batteries (LIB) have become an indispensable part of modern life. The intensive testing of batteries is not only important for ensuring their quality and function but even more for safety aspects. CT can show you all details.
Read more通过计算机层析成像技术对复杂组件进行孔隙率检测
六月 02, 2022
电子制造企业在产品内部的孔隙率评估上面临着挑战。Peter Koch和Jeff Urbanski展示了协同工作的新分析方法,可在关键界面上进行更精确的孔隙率测量。
Read more