How CT Can Predict the Performance of Agile Additive Manufacturing Designs
April 29, 2019 | Ana Segrt
Additive manufacturing (AM) is one of the most revolutionary processes to come along in many years, making a dramatic impact on the industrial market.
Additive manufacturing (AM) is one of the most revolutionary processes to come along in many years, making a dramatic impact on the industrial market. Also known as 3D printing, AM is a manufacturing technique that builds objects layer by layer using materials such as polymers, metals, and composites. This fast-evolving technology is changing the way engineers think about product design by offering enormous flexibility in what is geometrically possible. However, the more complex the design, the more challenging (and necessary) it can be to inspect in the quality control process.
Many additive manufacturers and designers have adopted industrial computed tomography (CT) to perform non-destructive testing (NDT) on the part to ensure quality throughout the R&D and production processes. A CT scan produces a 3D volumetric density map. The 3D-volume is generated by the reconstruction of a high number of 2D x-ray images. Many 2D projection images can be combined by powerful software to produce a 3D volume of practically any part, object, or product. This is critical for any application for which a manufacturer wishes to see inside an object without destroying it – and the inside is where the complexity is increasing with this new manufacturing process.
While CT technology has taken its rightful place as a viable NDT tool, many engineers may not realize what an important role it can play in the discovery phase of research and development. Utilizing CT in R&D can avoid many issues later in the production process by identifying key information about part design, raw materials and how well it matches the intended geometry, all of which are vital to the success of the product. Once designers discover the power that CT can enable as an informational tool rather than just a quality tool, they will never look at CT the same way again. This white paper will help to educate design engineers on the benefits of CT in evaluating part designs to determine how the part will perform, if it is fit for purpose, and if there are any variables in measurement. As with all good things, the information retrieved at the very beginning can help the designer to be more agile and to avoid costly downtime later in the design and eventually production stages. It will also clear up any misconceptions about CT and clarify how recent technology improvements in CT scanning speed, resolution and price-performance ratios make it a great tool for use in the early R&D phase.

Latest Posts
Fast porosity analysis of castings with Dragonfly deep learning
September 22, 2023 | Gina Naujokat
View three simple (and fast!) methods for evaluating porosity via CT with Dragonfly. Each method can be automated using macros, with a downloadable application note detailing the method and analysis time required.
Read moreLooking back millions of years into the earth's history with computed tomography
July 27, 2023 | Gina Naujokat
A sedimentary slab from the Holstein Rock was to be examined for its fossil content using computed tomography. Latest CT technology provided results no one had expected.
Read moreUnveiling the Mysteries of Life's Origins: Comet Yxlon and our Partnership with the Museum für Naturkunde Berlin
June 06, 2023 | Isabella Drolz
Have you ever pondered the wondrous journey of life, from conception to birth? At Comet Yxlon, we are proud to support the Museum für Naturkunde Berlin in their quest to answer this profound question through the innovative application of CT technology.
Read more